Oberseminar Algebra Magdeburg 2008

Main results of the diploma

Alternating factor groups of Fuchsian triangle groups

Patrick Reichert

mail@patrick-reichert.de

http://www.patrick-reichert.de

Tutors of the diploma: Prof. J. Wolfart, Frankfurt/M. Prof. G. Stroth, Halle/S.

Topics of this presentation

- 1. Introduction: Why quotients of Fuchsian triangle groups ?
- 2. Existence of alternating factor groups
- 3. Search algorithms
- 4. Conjugacy of normal subgroups in $PSL(2,\mathbb{R})$

1. Introduction: Why quotients of Fuchsian triangle groups ?

Two points of view for **Riemann surfaces**:

- Bernhard Riemann (1851 dissertation): Riemann surface is the natural maximal domain of some analytic function under analytic continuation.
- Hermann Weyl (1913 'Die Idee der Riemannschen Fläche'): A Riemann surface is a one dimensional complex manifold.

Discussion of the different definitions

These two points of view raise in interesting questions:

- If we start with a Riemann surface as an abstract manifold, how do we know that it supports analytic functions ?
- If we develop Riemann surfaces from the point of view of analytic continuation, how do we know that in this way we get all complex manifolds of one complex dimension ?
- \Rightarrow Fortunately, it turnes out that these two different views of a Riemann surface are indeed identical.

Uniformization Theorem for Riemann surfaces

Every Riemann surface is the topological quotient with respect to the action of some group Γ of analytic self-maps of one of the three classical geometries of constant curvature:

- Riemann sphere Σ (positive curvature)
- Euclidean (or complex) plane \mathbb{C} (zero curvature)
- Hyperbolic plane \mathbb{H} (negative curvature)

In all cases the analytic self-maps are Möbius maps:

$$z \mapsto \frac{az+b}{cz+d}$$

What kind of Riemann surfaces can occur ?

- Quotients of the Riemann sphere: only the sphere itself
- Quotients of the Euclidean plane:
 - $-\Gamma$ trivial \Rightarrow plane itself (once punctured sphere)
 - $-\Gamma$ cyclic \Rightarrow twice punctured sphere
 - Γ generated by two independent translations \Rightarrow torus

Third cast: Hyperbolic plane

So the Uniformization Theorem implies:

- Apart from the non-negative curvature cases, every other Riemann surface is the quotient of the hyperbolic plane H (upper half-plane in the complex plane) by a group of Möbius (conformal) self-maps of the hyperbolic plane.
- Such groups must be **discrete** (otherwise the quotient structure would not be satisfactory).
- These groups are called **Fuchsian groups**.

Why are triangle groups interesting ?

Can only answered using G. V. Belyi's Theorem (1979), which needs some preparation:

- A function f is called meromorphic on a compact Riemann surface R if it is an analytic map from R to the Riemann sphere Σ.
- Any such function has a multiplicity or degree n, in the sense that for any w at the sphere there are exactly n solutions of f(z) = w, z ∈ R. (Where we count multiple solutions in the usual way.)

Belyi's theorem

- For certain values of w the cardinality of the set f⁻¹({w}) may be strictly less than n, such w are the critical values of the map f: w is a critical value ⇔ |f⁻¹({w})| < n
- Belyi function: Meromorphic function f, whose critical values lie in the set {0, 1, ∞}
- Belyi's theorem. A compact Riemann surface \mathcal{R} supports a Belyi function $\Leftrightarrow \mathcal{R}$ is isomorphic to the Riemann surface of some curve P(z, w) = 0 whose coefficients are algebraic numbers.

Definition of hyperbolic triangle groups

- Let p, q, r integers with 1/p + 1/q + 1/r < 1.
- Let T denote the hyperbolic triangle with angles π/p , π/q , π/r .
- Let Δ* denote the group generated by the reflections in the sides of T.
- Triangle group $\Delta = \Delta(p, q, r)$ is the subgroup of index 2 in Δ^* consisting of conformal transformations.
- This triangle group is determined up to conjugacy in the group of all conformal homeomorphisms of \mathbb{H} by the integers p, q, r.
- $\triangle(p,q,r)$ is is generated by three elliptic generators x, y, z; each with a unique fixed point in \mathbb{H} :

$$\triangle(p,q,r) = \langle x, y, z \, | \, x^p = y^q = z^r = xyz = 1 \rangle$$

Connection between Fuchsian triangle groups and Riemann surfaces

- Let Γ be a subgroup of finite index in $\Delta = \Delta(p, q, r)$.
- Then Γ is a Fuchsian group and thus $\Gamma \setminus \mathbb{H}$ is a compact Riemann surface.
- The quotient space $\Delta \setminus \mathbb{H}$ is a sphere and the natural projection

 $\tau\colon \Gamma \backslash \mathbb{H} \mapsto \Delta \backslash \mathbb{H}$

has at most 3 critical values. (These occur at the projections of the fixed points of the elliptic generators of Δ , but possible if this fixed point is a fixed point of an elliptic generator of Γ , then there will be less than 3 critical values.)

Connection between Fuchsian triangle groups and Riemann surfaces II

- Triangle group $\Delta = \Delta(p, q, r)$
- Finite index subgroup $\Gamma < \Delta$
- Natural projection: $\tau \colon \Gamma \setminus \mathbb{H} \mapsto \Delta \setminus \mathbb{H}$ with at most 3 critical values
- There is a Möbius transformation σ mapping the critical values into $\{0, 1, \infty\}$.
- **Result:** $\beta = \sigma \tau$ is a Belyi function from $\Gamma \setminus \mathbb{H}$ to $\Delta \setminus \mathbb{H}$.

Conclusion of the introduction

Corollary (Belyi, Wolfart, Jones, Singerman). The following statements are equivalent:

- 1. \mathcal{R} is a Belyi surface (i.e. \mathcal{R} is defined over $\overline{\mathbb{Q}}$).
- 2. There is a Belyi function $\beta \colon \mathcal{R} \to \Sigma$.
- 3. $\mathcal{R} \cong \Gamma \setminus U$, where Γ is a finite index subgroup in a cocompact triangle group and U is one of \mathbb{H} , \mathbb{C} or Σ .

Background of further investigations

If we look to epimorphisms

$$\varphi \colon \triangle(p,q,r) \to A_n, \qquad \left(\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1\right)$$

then

$$\Gamma = \mathrm{Kernel}(\varphi) < \bigtriangleup(p,q,r)$$

is a subgroup of finite index $|A_n| = \frac{1}{2} n!$ and therefore

$$\mathcal{R} = \Gamma \backslash \mathbb{H}$$

is a Riemann surface defined over $\overline{\mathbb{Q}}$ which automorphism group contains A_n .

2. Existence of alternating factor groups

Miller (1901) proved that the classical modular group $PSL(2,\mathbb{Z})$ has among its homomorphic images every alternating group, with the exception of A_3, A_6, A_7, A_8 .

Conder (1980) proved that for $n \ge 168$ the alternating group A_n is a Hurwitz group.

In 1981 he proved that

- (a) For every $k \ge 7$ all but finitely many alternating groups can be presented as factor groups of $\Delta(2,3,k)$.
- (b) All but finitely many alternating groups can be generated by two elements u, v with $u^2 = v^k = 1$.

More existence theorems

- Result of Mustaq/Rota (1992): For nearly all natural numbers n, A_n is a homomorphic image of $\Delta(2, k, l)$ with even $k \ge 6$ and $l \ge 5k - 3$.
- Everitt proved in 1994: For all $r \ge 6$, nearly all alternating groups A_n are factor groups of $\triangle(2, 4, r)$.
- In 1997 he showed:
- (a) For $r \ge 40$ there is a number N so that the group $G = \triangle(3, 5, r)$ has among its homomorphic images the group A_n or S_n for all n > N.
- (b) For every prime $q \ge 7$ and every $r \ge 4q$, the group $\triangle(3, q, r)$ has the same property.

Final theorem of Everitt

In 2000 Brent Everitt proved the 30 years old conjecture of Higman:

Any Fuchsian group has among its homomorphic images all but finitely many alternating groups.

The proof is constructive and uses coset diagrams. For every Fuchsian group G there is a constant N, so that G surjects the alternating groups A_n for $n \ge N$. N depends only on the signature of the group and can be easily calculated.

Is the theorem of Everitt effective ?

Result of Everitt's proof for some sample groups:

Triangle group	Representation of index n	Lower bound N
$\bigtriangleup(2,3,7)$		N = 168
$\bigtriangleup(2,5,6)$	n = 105a + 176b + 15	N = 18215
$\bigtriangleup(2,5,7)$	n = 105a + 286b + 15	N = 29655
$\bigtriangleup(2,5,9)$	n = 175a + 48b + 20	N = 8198
$\triangle(2,5,11)$	n = 66a + 175b + 15	N = 11325
$\triangle(2,5,13)$	n = 130a + 189b + 26	N = 24278

Result: In general, N is very large.

3. Search Algorithms

Task: Find all epimorphisms for a given triangle group to a given alternating group.

All computations were made using GAP.

Discussion of two methods:

- Built-in algorithm: GQuotients
- Use of low index subgroups algorithm for finitely presented groups

GQuotients

Task:

Determine all epimorphisms up to conjugation of

$$\triangle(p,q,r) = \langle x, y \, | \, x^p = y^q = (xy)^r = 1 \rangle$$

into a given alternating group A_n .

Commands in GAP:

F := FreeGroup("x", "y");
G := F / [F.1^p, F.2^q, (F.1*F.2)^r];
GQuotients(G, AlternatingGroup(n));

How does GQuotients work ?

GQuotients is looking for tuples (g_x, g_y) from image group A_n with the following properties:

- g_x and g_y must be images of the FP-generators x and y, e.g. $g_x^p = g_y^q = 1$.
- g_x and g_y must be homomorphic images, e.g. all relations must hold: $(g_x g_y)^r = 1$.
- g_x and g_y must generate A_n .

The method only returns tuples (g_x, g_y) that are unique up to A_n -conjugation.

Low index algorithm for FP groups

Suppose there is epimorphism $\varphi : \Delta \mapsto A_n$. Δ operates on right cosets as A_n . The stabilizer of one point is a subgroup of Δ of index n. The reverse of this statement is also true and can be used to construct the following algorithm:

- Find all subgroups of Δ of index n.
- Test whether the image of the operation of Δ on right cosets is the alternating group.
- Faster test: Size of image must be $|A_n| = \frac{n!}{2}$.

Low index subgroups algorithm in GAP

F := FreeGroup("x", "y"); $G := F / [F.1^p, F.2^q, (F.1*F.2)^r];$ Size_A_n := Factorial(n) / 2; Subgroups := LowIndexSubgroupsFpGroup(G, n); All_Images := List (Subgroups, sub -> Image(FactorCosetAction(G, sub))); Interesting_Images := **Filtered**(All_Images, im -> Size(im) = Size_A_n); Images_Generators := List(Interesting_Images, im -> GeneratorsOfGroup(im));

How does low index algorithm work ?

With Alexander Hulpke's findings, the algorithm can be described in the following way.

• LowIndex runs over all tuples (g_x, g_y) of permutations out of S_n and tests whether the following conditions hold:

$$-g_x^p = g_y^q = (g_x g_y)^r = 1$$

 $-\langle g_x, g_y \rangle$ operates transitively on $m \leq n$ points.

- Result: Subgroups of index *n* and the operation on the right cosets.
- Last step: Size determination of the images.

Comparison of the two methods

Differences between the algorithms:

- The generation of the tuples is different. (The LowIndex algorithm calculates the permutations pointwise, e.g. first image 1 for all permutations, then image 2 and so on.)
- Conjugacy test is faster in LowIndex (because S_n).

We should use GQuotients if

- the image group is smaller than A_n or S_n , or if
- there are many quotients of small index.

LowIndex should be prefered if

• we only want to determine the existence of epimorphisms.

Genus formula

For a given triangle group $\Delta(p,q,r)$ we look at the existence of epimorphisms into alternating groups A_n . If p,q,r are primes, the Genus formula can be used to find some values of n for which no epimorphism into A_n exists.

Theorem (Genus formula):

If the triangle group $\triangle(p,q,r)$ with primes p, q, r has got a subgroup with index n, then we have

$$(p-1)\left[\frac{n}{p}\right] + (q-1)\left[\frac{n}{q}\right] + (r-1)\left[\frac{n}{r}\right] \ge 2n-2,$$

while [t] is the integer part of the rational number t (Gaussian symbol).

Genus formula as transitivity criterion

If the triangle group $G = \triangle(p, q, r)$ with primes p, q, r features an epimorphism $\varphi \colon G \mapsto A_n \ (n \geq 3)$, then we have

$$(p-1)\left[\frac{n}{p}\right] + (q-1)\left[\frac{n}{q}\right] + (r-1)\left[\frac{n}{r}\right] \ge 2n-2.$$

This is due to the fact that every epimorphism into A_n corresponds to a subgroup of index n.

The equation above is always true for $n > 3 \max\{p, q, r\}$. In these cases the formula cannot be used to show that there exists no epimorphism into A_n .

Results of the Genus formula

Group	Index n with no epimorphisms into A_n
$\bigtriangleup(3,5,7)$	{13}
$\triangle(5,7,11)$	{19}
$\triangle(7,11,13)$	$\{19, 20\}$
$\bigtriangleup(11, 13, 17)$	$\{21, 32\}$
$\bigtriangleup(13, 17, 19)$	$\{25, 31, 32, 33\}$
$\bigtriangleup(17, 19, 23)$	$\{30, 31, 32, 33\}$
$\bigtriangleup(19, 23, 29)$	$\{36, 37, 45, 56\}$
$\bigtriangleup(23,29,31)$	$\{42, 43, 44, 45, 53, 54, 55, 56, 57\}$

4. Conjugacy in $PSL(2, \mathbb{R})$

Topics of this section:

- If a Fuchsian triangle group Δ contains two normal subgroups N_1 and N_2 , how can we determine, if those groups are conjugate to each other in $PSL(2,\mathbb{R})$?
- If they are conjugate, how can we find a suitable subgroup H of $PSL(2,\mathbb{R})$ containing an element h with $N_1^h = N_2$?
- If H can be choosen as a finite-index supergroup of Δ, then the conjugating element h can be easily calculated using integrated systems for computational group theory like GAP.

Conjugacy in $PSL(2,\mathbb{R})$

Girondo/Wolfart (2005):

If the $PSL(2, \mathbb{R})$ -conjugate surface groups K and K' are both normal subgroups of the triangle group Δ , then $K' = \alpha K \alpha^{-1}$ for some $\alpha \in N(\Delta)$ or $N(\tilde{\Delta})$ where $\tilde{\Delta}$ denotes the normalizer N(K) of K in $PSL(2, \mathbb{R})$.

Using this result, it is possible to prove:

Let Δ be a triangle group that is contained in only one maximal triangle group $\overline{\Delta}$. If Δ contains two normal subgroups N_1 and N_2 that are conjugate surface groups in $PSL(2,\mathbb{R})$, then there exists an element $h \in \overline{\Delta}$ with $N_1^h = N_2$.

Proof of conjugacy theorem (I)

The proof uses mainly the following statements:

- Previous theorem of Girondo/Wolfart
- The normalizer of a non-cyclic Fuchsian group in $PSL(2,\mathbb{R})$ is again a Fuchsian group.
- Let G be a discrete group of conformal isometries of the hyperbolic plane. If G contains a triangle group as subgroup, then G itself is a triangle group. (Singerman)

Proof of conjugacy theorem (II)

Short version: Surface groups $N_1, N_2 \triangleleft \Delta$, conjugate in $PSL(2, \mathbb{R})$ $\Rightarrow N_1^h = N_2$ for an element $h \in \overline{\Delta}$.

<u>Proof:</u> Theorem of Girondo/Wolfart states existence of an element h in $N(\Delta)$ or $N(N(N_1))$.

Case $1 - h \in N(\Delta)$: Since the normalizer is defined as

$$N(\Delta) = N_{PSL(2,\mathbb{R})}(\Delta) = \{ \alpha \in PSL(2,\mathbb{R}) \, | \, \Delta^{\alpha} = \Delta \}$$

we obviously have $\Delta \leq N(\Delta) \leq PSL(2,\mathbb{R})$.

A Fuchsian super-group of a triangle group must be a triangle group:

$$\Delta \le N(\Delta) \le \overline{\Delta} < PSL(2,\mathbb{R}) \implies h \in \overline{\Delta}.$$

Proof of conjugacy theorem (III) Case $2 - h \in N(N(N_1))$:

We have

 $N_1 \leq \Delta \Rightarrow \Delta \leq N(N_1) \leq N(N(N_1)) \leq PSL(2,\mathbb{R}).$

Since Δ is a triangle group, $N(N_1)$ is also a triangle group and also $N(N(N_1))$ is. Therefore we can conclude:

 $\Delta \leq N(N_1) \leq N(N(N_1)) \leq \overline{\Delta} < PSL(2,\mathbb{R}) \implies h \in \overline{\Delta}.$

<u>Result</u>: In every case, the conjugating element is contained in the maximal triangle group $\overline{\Delta}$.

Numerical example

- Looking for epimorphisms from $\triangle(3, 5, 5)$ into alternating groups A_n
- Determine whether the kernels are conjugate in $PSL(2,\mathbb{R})$
- Since △(3, 5, 5) is only contained in the maximal group
 △(2, 5, 6), the conjugating element must only be searched in
 △(2, 5, 6).
- ⇒ Embedding of $\triangle(3,5,5)$ into $\triangle(2,5,6)$ and performing conjugacy tests in $\triangle(2,5,6)$

Calculation results

n	$ Epi(\triangle(3,5,5)\mapsto A_n) $	Conjugate kernels in $\triangle(2,5,6)$
5, 6, 7	2, 2, 3	0, 0, 0
10	22	6 (3 pairs)
11	67	38 (19 pairs)
12	54	40 (20 pairs)
13	24	18 (9 pairs)
15	733	484 (242 pairs)
16	3411	$2954 \ (1477 \text{ pairs})$
17	3194	2872 (1436 pairs)
18	1564	$1374 \ (687 \text{ pairs})$
19	377	348 (174 pairs)

Why do only kernel pairs appear?

Lemma: There cannot be a triple (N_1, N_2, N_3) of pairwise $\triangle(2,5,6)$ -conjugate kernels that are not conjugate in $\triangle(3,5,5)$. **Proof:** Let $\Delta = \triangle(3, 5, 5)$. Thus $\overline{\Delta} = \triangle(2, 5, 6)$. Then $|\triangle(2,5,6): \triangle(3,5,5)| = 2$ and we have $\overline{\Delta}/\Delta = \{\Delta, x\Delta\}.$ If $N_1 \sim N_2$ then there is an element $\overline{\alpha} \in \overline{\Delta}$ with $N_1 = N_2^{\overline{\alpha}}$. This $\overline{\alpha}$ cannot be an element of Δ , because in this case N_1 and N_2 would be conjugate in Δ . So we have $\overline{\alpha} = x\alpha$ for an element $\alpha \in \Delta$. If further $N_2 \sim N_3$ there must be an element $\overline{\beta} \in \overline{\Delta}$ with $N_2^{\overline{\beta}} = N_3$. The same argumentation yields $\overline{\beta} = x\beta$ for an element $\beta \in \Delta$.

Together we have $N_3 = N_2^{\overline{\beta}} = N_1^{\overline{\alpha}^{-1}\overline{\beta}} = N_1^{\alpha^{-1}x^{-1}x\beta} = N_1^{\alpha^{-1}\beta}$ and therefore N_1 and N_3 would be conjugate in Δ .

Exceptional cases

There are 7 triangle groups, that are contained in more than one maximal triangle group (Singerman 1972):

- $\triangle(2,7,7) < \triangle(2,3,7), \ \triangle(2,7,7) < \triangle(2,4,7);$
- $\triangle(3,3,7) \underset{(8)}{<} \triangle(2,3,7), \ \triangle(3,3,7) \underset{(2)}{\lhd} \triangle(2,3,14);$
- $\triangle(3,3,9) < \triangle(2,3,9), \triangle(3,3,9) < \triangle(2,3,18);$
- $\triangle(3,8,8) < (2,3,8), \ \triangle(3,8,8) < (2,6,8);$
- $\triangle(4,4,5) < (2,4,5), \ \triangle(4,4,5) < (2,4,10);$
- $\triangle(7,7,7) \underset{(3)}{\triangleleft} \triangle(3,3,7) \Rightarrow \text{contained in } \triangle(2,3,7), \, \triangle(2,3,14);$
- $\triangle(9,9,9) \underset{(3)}{\triangleleft} \triangle(3,3,9) \Rightarrow \text{contained in } \triangle(2,3,9), \, \triangle(2,3,18).$

All groups on this slide are arithmetic (Takeuchi 1977).

Groups contained in two maximal triangle groups

Can the theorem of Girondo/Wolfart also be reformulated for the seven remaining triangle groups, that are contained in two maximal triangle groups ?

For each group Δ of the seven groups we must answer the following questions:

- What is the normalizer N(Δ)? It will be contained in only one maximal group.
- What is N(N(K)) if K is a normal subgroup of Δ ? Is this normalizer always contained in the same maximal group for each K?

Normalizers of the exceptional groups

For five of them the determination is very simple:

$$\Delta(2,7,7) \underset{(2)}{\triangleleft} \Delta(2,4,7) \Rightarrow N(\Delta(2,7,7)) = \Delta(2,4,7);$$

$$\Delta(3,3,7) \underset{(2)}{\triangleleft} \Delta(2,3,14) \Rightarrow N(\Delta(3,3,7)) = \Delta(2,3,14);$$

$$\Delta(3,3,9) \underset{(2)}{\triangleleft} \Delta(2,3,18) \Rightarrow N(\Delta(3,3,9)) = \Delta(2,3,18);$$

$$\Delta(3,8,8) \underset{(2)}{\triangleleft} \Delta(2,6,8) \Rightarrow N(\Delta(3,8,8)) = \Delta(2,6,8);$$

$$\Delta(4,4,5) \underset{(2)}{\triangleleft} \Delta(2,4,10) \Rightarrow N(\Delta(4,4,5)) = \Delta(2,4,10);$$

$$\Delta(7,7,7) ?$$

$$\Delta(9,9,9) ?$$

Closer look to $\triangle(7,7,7)$

The inclusion list of Singerman (1972) states:

$$\triangle(7,7,7) \triangleleft \triangle(3,3,7) \stackrel{(8)}{\underset{(2)}{\triangleleft}} \triangle(2,3,7)$$

To calculate the normalizer of $\triangle(7,7,7)$, this group must be embedded into $\triangle(2,3,7)$ and $\triangle(2,3,14)$.

This can be done using the results of Girondo (2003), who provides subgroup generators for every inclusion between triangle groups.

Embedding of $\triangle(7,7,7)$ into $\triangle(2,3,14)$

The triangle group

$$\triangle(2,3,14) = \langle G, H, I | G^2 = H^3 = I^{14} = GHI = 1 \rangle$$

has got the subgroups

$$\langle D, E, F \rangle = \langle GHG, H, H^2GH^2G \rangle$$
 and
 $\langle A, B, C \rangle = \langle H^2GH^2G, GHGH^2GHG, GH^2GH^2 \rangle$

of index 2 and 6 which are isomorphic to

$$\Delta(3,3,7) = \langle D, E, F | D^3 = E^3 = F^7 = DEF = 1 \rangle \text{ and}$$

$$\Delta(7,7,7) = \langle A, B, C | A^7 = B^7 = C^7 = ABC = 1 \rangle.$$

 $\triangle(7,7,7)$ is normal subgroup of $\triangle(2,3,14)$ Using GAP we get:

- > F := FreeGroup("x", "y");
- > g2314 := F / [F.1², F.2³, (F.1 * F.2)¹⁴];
- > G := g2314.1; H := g2314.2;
- > g777 := Subgroup(g2314, [H²*G*H²*G, G*H*G*H²*G*H*G, G*H²*G*H²]);
- > **Index**(g2314, g777);
- > **IsNormal**(g2314, g777); true

So we have $\triangle(7,7,7) \lhd \triangle(2,3,14)$.

Embedding of $\triangle(7,7,7)$ into $\triangle(2,3,7)$ The triangle group

$$\triangle(2,3,7) = \langle G, H, I \, | \, G^2 = H^3 = I^7 = GHI = 1 \rangle$$

has got the subgroups

 $\triangle(3,3,7) = \langle D, E, F | D^3 = E^3 = F^7 = DEF = 1 \rangle \text{ with index } 8, \\ \triangle(7,7,7) = \langle A, B, C | A^7 = B^7 = C^7 = ABC = 1 \rangle \text{ with index } 24$

whereby the generators are

 $D = HGHGHGH^2GH^2, E = HGH^2GHGHGH^2, F = H^2G$ and

$$A = H^2G, B = DH^2GD^2, C = EH^2GE^2.$$

Is $\triangle(7,7,7)$ also normal in $\triangle(2,3,7)$?

Using GAP we get:

- $\triangle(3,3,7) \not\triangleleft \triangle(2,3,7)$ and
- $\triangle(7,7,7) \not \triangleleft \triangle(2,3,7).$

Since $\triangle(7,7,7) \triangleleft \triangle(2,3,14)$ and $\triangle(2,3,14)$ is maximal, we have $N(\triangle(7,7,7)) = \triangle(2,3,14).$

Normalizers of the exceptional groups (II) This is the complete list:

> $\triangle(2,7,7) \triangleleft \triangle(2,4,7) \implies N(\triangle(2,7,7)) = \triangle(2,4,7);$ $\triangle(3,3,7) \triangleleft \triangle(2,3,14) \Rightarrow N(\triangle(3,3,7)) = \triangle(2,3,14);$ $\triangle(3,3,9) \triangleleft \triangle(2,3,18) \Rightarrow N(\triangle(3,3,9)) = \triangle(2,3,18);$ $\triangle(3,8,8) \triangleleft (2,6,8) \Rightarrow N(\triangle(3,8,8)) = \triangle(2,6,8);$ $\triangle(4,4,5) \triangleleft \triangle(2,4,10) \Rightarrow N(\triangle(4,4,5)) = \triangle(2,4,10);$ $\triangle(7,7,7) \triangleleft \triangle(2,3,14) \Rightarrow N(\triangle(7,7,7)) = \triangle(2,3,14);$ $\triangle(9,9,9) \triangleleft \triangle(2,3,18) \Rightarrow N(\triangle(9,9,9)) = \triangle(2,3,18).$

Normalizers of subgroups

Small subgroup diagram:

$$\triangle(7,7,7) \triangleleft \triangle(3,3,7) \stackrel{(8)}{\underset{(2)}{\triangleleft}} \triangle(2,3,7)$$

We already know: $N(\triangle(7,7,7)) = N(\triangle(3,3,7)) = \triangle(2,3,14).$ Question: Is there a normal subgroup K of $\triangle(3,3,7)$ with

 $N(N(K)) = \triangle(2,3,7) ?$

Equivalent question: Is there a normal subgroup of $\Delta(3,3,7)$ that is also normal in $\Delta(2,3,7)$?

Exploring with GAP

- Define triangle group $G = \triangle(3, 3, 7)$.
- Use 'LowIndex' to find all subgroups of $\triangle(3,3,7)$ with index 7.
- Label the subgroups with U_1, \ldots, U_6 . Define with $\varphi_i \colon S_7 \mapsto S_7$ the operation of G on the right cosets G/U_i .

i	1	2	3	4	5	6
Image (φ_i)	A_7	7:3	L(3,2)	A_7	7:3	L(3,2)
$ \text{Image}(\varphi_i) $	2520	21	168	2520	21	168
$Kernel(\varphi_i) \triangleleft \triangle(3,3,7)$	yes	yes	yes	yes	yes	yes
$Kernel(\varphi_i) \triangleleft \triangle(2,3,7)$	no	yes	no	no	no	no

Surprising fact: The kernel of φ_2 is normal in $\triangle(2,3,7)$.

Summary of GAP results

There is a group K with the following properties.

(a)
$$K \triangleleft (7,7,7) \triangleleft (3,3,7) \triangleleft (2,3,7) \triangleleft (2,3,7) \triangleleft (3,3,7) \triangleleft (3,3,7)$$

(b)
$$K \underset{(21)}{\lhd} \Delta(3,3,7), K \underset{(168)}{\lhd} \Delta(2,3,7)$$

- (c) Therefore we have $N_{PSL(2,\mathbb{R})}(K) = \triangle(2,3,7)$, although $N_{PSL(2,\mathbb{R})}(\triangle(3,3,7)) = \triangle(2,3,14).$
- (d) K is the kernel of the homomorphism $\varphi_2 \colon \triangle(3,3,7) \mapsto S_7,$ $D \mapsto (2\ 4\ 6)(3\ 5\ 7), E \mapsto (1\ 2\ 5)(3\ 6\ 7), F \mapsto (1\ 3\ 5\ 6\ 7\ 4\ 2).$
- (e) Restricted to the subgroup $\triangle(7,7,7)$, the mapping is defined as follows: $A \mapsto (1 \ 3 \ 5 \ 6 \ 7 \ 4 \ 2), B \mapsto (1 \ 7 \ 3 \ 4 \ 5 \ 2 \ 6),$ $C \mapsto (1 \ 5 \ 7 \ 2 \ 3 \ 6 \ 4)$, therefore the image of $\triangle(7,7,7)$ is cyclic.

Conjugacy theorem for exceptional cases

The example has shown, that the theorem of Girondo/Wolfart must be formulated as follows for the seven exceptional groups:

Let Δ be a triangle group that is contained in two different maximal triangle groups $\overline{\Delta}_1$ and $\overline{\Delta}_2$. If Δ contains two normal subgroups N_1 and N_2 that are conjugate surface groups in $PSL(2,\mathbb{R})$, then there exists an element $h \in \overline{\Delta}_1 \cup \overline{\Delta}_2$ with $N_1^h = N_2$.

Numerical example

- Looking for epimorphisms from $\Delta(3,3,7)$ into A_n
- Determine whether the kernels are conjugate in $PSL(2,\mathbb{R})$
- Since $\triangle(3,3,7)$ is contained in the maximal groups $\triangle(2,3,7)$ and $\triangle(2,3,14)$, the following algorithm has to be used twice:
 - Define maximal triangle group $\triangle(2,3,7)$ (resp. $\triangle(2,3,14)$)
 - Define $\triangle(3,3,7)$ as subgroup
 - Determine the epimorphisms from $\Delta(3,3,7)$ into A_n
 - Perform conjugacy tests on the kernels directly in $\triangle(2,3,7)$ (resp. $\triangle(2,3,14)$)

Calculation results

n	$ \triangle(3,3,7)\mapsto A_n $	Conj. in $\triangle(2,3,14)$	Conj. in $\triangle(2,3,7)$	
7	2	2 (1 pair)	0	
9	5	4 (2 pairs)	0	
10	1	0	0	
14	128	96 (48 pairs)	?	
15	267	220 (110 pairs)	?	
16	339	264 (132 pairs)	?	
17	110	80 (40 pairs)	?	
18	40	20 (10 pairs)	?	
19	12	0	?	
21	8224	?	?	

Summary of the presentation

- 1. Existence of alternating factor groups: Many exists !
- 2. Search algorithms:

Algorithm 'LowIndexSubgroups' is faster than 'GQuotients'.

3. Conjugacy of normal subgroups in PSL(2, ℝ):
Conjugating element always can be found in a maximal triangle group.

References

Articles

- [CCR93] C.M. Campbell, M.D.E. Conder, E.F. Robertson, Definingrelations for Hurwitz groups, Glasgow Math. J. 36 (1994), pp. 363–370
- [CIW94] P.B. Cohen, C. Itzykson, J. Wolfart, Fuchsian triangle groups and Grothendieck Dessins, Communications in Mathematical Physics 163 (1994), pp. 605–627
- [CM88] M.D.E. Conder, J. McKay, A necessary condition for transitivity of a finite permutation group, Bull. London Math. Soc. 20 (1988), no. 3, pp. 235–238
- [Con80] M.D.E. Conder, Generators for alternating and symmetric groups, Journal London Mathematical Society 22 (1980), no. 2, pp. 75–86

- [Con81] M.D.E. Conder, More on generators for alternating and symmetric groups, Quarterly Journal of Mathematics (Oxford) Ser. 2, 32 (1981), pp. 137–163
- [Con88] M.D.E. Conder, On the group $G^{6,6,6}$, Quarterly Journal of Mathematics (Oxford) Ser. 2, **39** (1988), pp. 175–183
- [Con90] M.D.E. Conder. Hurwitz groups: a brief survey, Bulletin (New Series) of the American Mathematical Society 23 (1990), no. 2, pp. 359–370
- [Con01] M.D.E. Conder, Group actions on graphs, maps and surfaces with maximum symmetry, Summary, Oxford (2001), http://www.math.auckland.ac.nz/~conder/preprints/GroupActions.pdf
- [Cox39] H.S.M. Coxeter, The abstract groups $G^{m,n,p}$, Trans. Amer. Math. Soc. **45** (1939), pp. 73–150

- [Eve97] B. Everitt, Alternating Quotients of the (3,q,r) Triangle Groups, Comm. Algebra 25 (1997), pp. 1817–1832
- [Eve00] B. Everitt, Alternating Quotients of Fuchsian Groups, J. Algebra **223** (2000), pp. 457–476
- [GGD99] E. Girondo, G. Gonzáles-Diez, On extremal discs inside compact hyperbolic surfaces, C. R. Acad. Sci. Paris 329 (1999), Serie I, pp. 57–60
- [GW05] E. Girondo, J. Wolfart, Conjugators of Fuchsian groups and quasiplatonic surfaces, Quart. J. Math. 56 (2005), pp. 525–540
- [Gre63] L. Greenberg, *Maximal Fuchsian Groups*, Bull. Amer. Math. Soc. **69** (1963), pp. 569–573
- [Jon98] G.A. Jones, Characters and surfaces: a survey, in: R. Curtis,
 R. Wildon (ed.), The Atlas of Finite Groups: Ten Years on,
 Cambridge University Press, Cambridge 1998, pp. 90–118

- [Mac01] C. Maclachlan, Introduction to arithmetic Fuchsian groups, in:
 E. Bujalance, A.F. Costa, E. Martinez, Topics on Riemann Surfaces and Fuchsian Groups, Cambridge University Press, Cambridge 2001, pp. 29–41
- [Mac69] A.M. Macbeath, Generators of the linear fractional groups, Number Theory, Proceedings of Symposia in Pure Mathematics 12 (1969), American Mathematical Society, Providence, R. I., pp. 14–32
- [Mil01] G.A. Miller, On the groups generated by two operators, Bull. Amer. Math. Soc. 7 (1901), pp. 424–426
- [MR92] Q. Mushtaq, G.-C. Rota, Alternating groups as quotients of two generator groups, Advances in Mathematics 96 (1992), no. 1, pp. 113–121
- [MS93] Q. Mushtaq, H. Servatius, Permutation representations of the symmetry groups of regular hyperbolic tessellations, Journal of the London Mathematics Society 48 (1993), no. 2, pp. 77–86

- [Rei96] P. Reichert, *Beweis eines Satzes über algebraische Zahlen*, result of project work in school, April 1996, http://www.patrickreichert.de/publikationen/facharb/facharb.dvi
- [Sin72] D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. 6 (1972), no. 2, pp. 29–38
- [SIS03] D. Singerman, R. I. Syddall. The Riemann surface of a uniform dessin, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 44 (2003), no. 2, pp. 413–430
- [Sto77] W.W. Stothers, Subgroups of the (2,3,7) triangle group, Manuscripta math. **20** (1977), pp. 323–334
- [SW00] M. Streit, J. Wolfart, Characters and Galois invariants of regular dessins, Revista Matemática Complutense 13 (2000), no.
 1, pp. 49–81
- [SW01] M. Streit, J. Wolfart, Cyclic Projective Planes and Wada Dessins, Documenta Math. 6 (2001), pp. 39–68

- [Tak75] K. Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan **27** (1975), no. 4, pp. 600–612
- [Tak77a] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan
 29 (1977), no. 1, pp. 91–106
- [Tak77b] K. Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo 24 (1977), no. 1, pp. 201–212
- [Wol97] J. Wolfart, The 'Obvious' Part of Belyi's Theorem and Riemann Surfaces with Many Automorphisms, in: L. Schneps,
 P. Lochak (ed.), Geometric Galois Actions 1, LMS Lecture Notes Series 242, Cambridge U.P. (1997), pp. 97–112
- [Wol00] J. Wolfart, Triangle groups and Jacobians of CM type, Frankfurt a.M. (2000), http://www.math.unifrankfurt.de/~steuding/wolfart/jac.dvi

- [Wol01] J. Wolfart, *Kinderzeichnungen und Uniformisierungstheorie*, Preprint, Frankfurt a.M. (2001), http://www.math.unifrankfurt.de/~steuding/wolfart/kizei.dvi
- [WS98] J. Wolfart, M. Streit, Galois actions on some series of Riemann surfaces with many automorphisms, Preprint, Frankfurt a.M. (1998), http://www.math.unifrankfurt.de/~streit/gal.dvi

Books

- [Art98] M. Artin, Algebra, Birkhäuser Verlag, Basel 1998
- [BCM01] E. Bujalance, A.F. Costa, E. Martinez, Topics on Riemann surfaces and Fuchsian groups, Cambridge University Press, Cambridge 2001
- [Bea83] A.F. Beardon, *The Geometry of Discrete Groups*, Springer Verlag, New York 1983

- [CM80] H.S.M. Coxeter, W.O.J. Moser, *Generators and Relations for* Discrete Groups, Springer Verlag, Berlin, Heidelberg 1980
- [Far01] D.R. Farenick, Algebras of Linear Transformations, Springer Verlag, New York 2001
- [Ive92] B. Iversen, *Hyperbolic Geometry*, Cambridge University Press, Cambridge 1992
- [Jae94] K. Jänich, *Topologie*, Springer Verlag, Berlin 1994
- [Joh01] D.L. Johnson, *Symmetries*, Springer Verlag, London 2001
- [Kat92] S. Katok, *Fuchsian groups*, The University of Chicago Press, Chicago 1992
- [KS98] H. Kurzweil, B. Stellmacher, *Theorie der endlichen Gruppen*, Springer Verlag, Berlin 1998
- [Leu96] A. Leutbecher, Zahlentheorie, Springer Verlag, Berlin, Heidelberg 1996

- [Mag74] W. Magnus, Noneuclidean tesselations and their groups, Academic Press, New York and London 1974
- [Mar91] G.A. Margulis, *Discrete subgroups of semisimple Lie groups*, Springer Verlag, Berlin, Heidelberg 1991
- [Zim84] R.J. Zimmer, Ergodic theory and semisimple groups, Birkhäuser Verlag, Basel, Boston, Stuttgart 1984

Other references

[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3, 2002, Centre for Interdisciplinary Research in Computational Algebra, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland; Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany (http://www.gap-system.org)